TRAP Is Necessary for Gliding Motility and Infectivity of Plasmodium Sporozoites

نویسندگان

  • Ali A Sultan
  • Vandana Thathy
  • Ute Frevert
  • Kathryn J.H Robson
  • Andrea Crisanti
  • Victor Nussenzweig
  • Ruth S Nussenzweig
  • Robert Ménard
چکیده

Many protozoans of the phylum Apicomplexa are invasive parasites that exhibit a substrate-dependent gliding motility. Plasmodium (malaria) sporozoites, the stage of the parasite that invades the salivary glands of the mosquito vector and the liver of the vertebrate host, express a surface protein called thrombospondin-related anonymous protein (TRAP) that has homologs in other Apicomplexa. By gene targeting in a rodent Plasmodium, we demonstrate that TRAP is critical for sporozoite infection of the mosquito salivary glands and the rat liver, and is essential for sporozoite gliding motility in vitro. This suggests that in Plasmodium sporozoites, and likely in other Apicomplexa, gliding locomotion and cell invasion have a common molecular basis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antibodies against thrombospondin-related anonymous protein do not inhibit Plasmodium sporozoite infectivity in vivo.

Thrombospondin-related anonymous protein (TRAP), a candidate malaria vaccine antigen, is required for Plasmodium sporozoite gliding motility and cell invasion. For the first time, the ability of antibodies against TRAP to inhibit sporozoite infectivity in vivo is evaluated in detail. TRAP contains an A-domain, a well-characterized adhesive motif found in integrins. We modeled here a three-dimen...

متن کامل

Shedding of TRAP by a Rhomboid Protease from the Malaria Sporozoite Surface Is Essential for Gliding Motility and Sporozoite Infectivity

Plasmodium sporozoites, the infective stage of the malaria parasite, move by gliding motility, a unique form of locomotion required for tissue migration and host cell invasion. TRAP, a transmembrane protein with extracellular adhesive domains and a cytoplasmic tail linked to the actomyosin motor, is central to this process. Forward movement is achieved when TRAP, bound to matrix or host cell re...

متن کامل

Conservation of a Gliding Motility and Cell Invasion Machinery in Apicomplexan Parasites

Most Apicomplexan parasites, including the human pathogens Plasmodium, Toxoplasma, and Cryptosporidium, actively invade host cells and display gliding motility, both actions powered by parasite microfilaments. In Plasmodium sporozoites, thrombospondin-related anonymous protein (TRAP), a member of a group of Apicomplexan transmembrane proteins that have common adhesion domains, is necessary for ...

متن کامل

The A-domain and the thrombospondin-related motif of Plasmodium falciparum TRAP are implicated in the invasion process of mosquito salivary glands.

Sporozoites from all Plasmodium species analysed so far express the thrombospondin-related adhesive protein (TRAP), which contains two distinct adhesive domains. These domains share sequence and structural homology with von Willebrand factor type A-domain and the type I repeat of human thrombospondin (TSP). Increasing experimental evidence indicates that the adhesive domains bind to vertebrate ...

متن کامل

Plasmodium berghei sporozoites acquire virulence and immunogenicity during mosquito hemocoel transit.

Malaria is a vector-borne disease caused by the single-cell eukaryote Plasmodium. The infectious parasite forms are sporozoites, which originate from midgut-associated oocysts, where they eventually egress and reach the mosquito hemocoel. Sporozoites actively colonize the salivary glands in order to be transmitted to the mammalian host. Whether residence in the salivary glands provides distinct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 90  شماره 

صفحات  -

تاریخ انتشار 1997